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In this Letter, we describe a general mechanism for emergence of a rainbow metric from a quantum 
cosmological model. This idea is based on QFT on a quantum spacetime. Under general assumptions, 
we discover that the quantum spacetime on which the field propagates can be replaced by a classical 
spacetime, whose metric depends explicitly on the energy of the field: as shown by an analysis of 
dispersion relations, quanta of different energy propagate on different metrics, similar to photons in a 
refractive material (hence the name “rainbow” used in the literature). In deriving this result, we do not 
consider any specific theory of quantum gravity: the qualitative behaviour of high-energy particles on 
quantum spacetime relies only on the assumption that the quantum spacetime is described by a wave-
function �o in a Hilbert space HG .

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
It has been argued [1–5] that classical gravity could be a collec-
tive phenomenon emerging from quantum degrees of freedom, not 
unlike fluid dynamics emerges from microscopic molecular interac-
tions. It is often stated that such an effective spacetime should be 
described by a so-called “rainbow metric” [6,7], i.e., a metric that 
depends somehow on the energy of the particles propagating on it: 
it is not difficult to conceive that probing such an effective space-
time with high enough energies leads eventually to corrections due 
to the underlying fundamental quantum structure.1 A fundamental 
origin for rainbow metrics has been identified (in the principle of 
relative locality [8]), their phenomenology has been studied [9,10], 
and tests (based on the Lorentz-violating nature of such energy-
dependent metrics) have been proposed [11,12]. What was missing 
until today – as far as our knowledge goes – is a general mecha-
nism which produces an emergent rainbow metric from a quantum 
spacetime. Indeed, while various proposals for quantum gravity2

can all be argued to reproduce classical gravity in the low energy 
limit, it seems to us that a clean procedure to extract this limit is 
yet to be formulated.

* Corresponding author.
E-mail addresses: mehdi.assanioussi@fuw.edu.pl (M. Assanioussi), 

andrea.dapor@fuw.edu.pl (A. Dapor), jerzy.lewandowski@fuw.edu.pl
(J. Lewandowski).

1 In condensed matter physics, it is well known that the propagation of photons 
in a refractive material can be described in terms of free photons on an energy-
dependent metric.

2 Prominent examples are loop quantum gravity [13–15], string theory [16] and 
causal dynamical triangulations [17].
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In this Letter, we put forward such a proposal. In Section 1, 
we provide a mechanism for emergence of cosmological spacetime 
from quantum cosmology in complete generality (we only require 
gravitational degree of freedom to be described in terms of a state 
�o in a Hilbert space HG , and to be “heavy” compared to the mat-
ter degrees of freedom in the Born–Oppenheimer sense). The idea 
for this mechanism is based on QFT on quantum spacetime as first 
introduced in [18]. With no ad-hoc input, we find that the effective 
metric describing the emergent spacetime is indeed of the rainbow 
type, as it depends on the wave-vector k of the mode of the mat-
ter field.3 In Section 2 we perform a low-energy expansion of this 
metric, and show that the first correction to the “classical met-
ric” ḡo

μν is of order βp2/m2, where p is the physical momentum 
of the mode, m is the mass of the field, and β is a simple func-
tion of �o . It is rather surprising that the only information needed 
to reconstruct the effective metric from the quantum spacetime 
is just parameter β . Finally, in Section 3, we study the modified 
dispersion relation of this emergent metric, and find that heavy 
particles – as opposed to light ones – behave in a different way 
than in classical gravity. In particular, the velocity of light remains 
an upper bound, but is now dependent on β .

3 It should be said that a second procedure exists to extract an emergent 
spacetime from such QFT on quantum spacetime [19], and it does not lead to a 
k-dependent metric. Whether the two approaches are physically equivalent is cur-
rently unknown, though the issue is being investigated by the authors.
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1. Effective metric for massive scalar field

For definiteness, consider a scalar field φ of mass m minimally 
coupled to gravity. Following the Hamiltonian treatment of linear 
perturbations in cosmology [20,21], we can separate the homoge-
neous and the inhomogeneous degrees of freedom, and the classi-
cal dynamics for mode k of φ is generated (up to second order) by 
the Hamiltonian

Hk = Ho − 1

2
H−1

o

[
π2

k + (k2a4 + m2a6)φ2
k

]
(1)

Here, (φk, πk) are the phase space variables representing mode k, 
while (a, πa) are the conjugated variables representing the homo-
geneous degrees of freedom of gravity (that is, the scale factor and 
its momentum). Ho is the part of the Hamiltonian that accounts 
for the evolution of these gravitational degrees of freedom at the 
same order.4

After formal quantisation of matter and gravity, (1) defines the 
following Schroedinger-like equation

−ih̄
d

dt
� =

[
Ĥo − 1

2

(
Ĥ−1

o ⊗ π̂2
k + �̂(k,m) ⊗ φ̂2

k

)]
� (2)

where

�̂(k,m) := k2 ̂H−1
o a4 + m2 ̂H−1

o a6 (3)

and � ∈H =HG ⊗ L2(R, dφk), with HG being the Hilbert space of 
quantum gravity.5 At this point, we take the test field approxima-
tion: we assume that the scalar field does not back-react on the 
gravitational part. It is therefore allowed to retain only the 0th or-
der in the Born–Oppenheimer expansion of �: during the whole 
evolution � = �o ⊗ ϕ , where ϕ ∈ L2(R, dφk) and �o ∈HG evolves 
via Schroedinger-like equation −id�o/dt = Ĥo�o . This being the 
case, we can trace away the gravitational part in (2) and obtain an 
equation for the matter part only:

ih̄
d

dt
ϕ = Ĥ fun

k ϕ (4)

where

Ĥ fun
k := 1

2

[
〈�o|Ĥ−1

o |�o〉π̂2
k + 〈�o|�̂(k,m)|�o〉φ̂2

k

]
(5)

The point first observed in [18] and further analysed in [22,19,
23,24], is that equation (4) resembles the Schroedinger equation 
for a quantum field φ on a suitably defined classical spacetime. 
Let the spacetime be classically described by a metric ḡμν of the 
Robertson–Walker type:

ḡμνdxμdxν = −N̄2dt2 + ā2(dx2 + dy2 + dz2) (6)

Constructing regular QFT on such a curved spacetime, one obtains 
for mode k of φ the following effective Schroedinger equation:

ih̄
d

dt
ϕ = Ĥeff

�k,m
ϕ (7)

where

Ĥeff
�k,m

:= 1

2

[
N̄

ā3
π̂2

k + N̄

ā3
(k2ā4 + m2ā6)φ̂2

k

]
(8)

In other words, we can replace the fundamental theory described 
by (2) with regular QFT on curved spacetime (6), provided that 

4 All the remaining degrees of freedom of gravity do not affect φk at this order, 
and can thus be disregarded in light of the Born–Oppenheimer test field approxi-
mation (see later).

5 We do not specify anything about HG : any theory of quantum gravity will do.
the terms in the two Hamiltonians (5) and (8) match. This last 
requirement gives rise to a system of 2 equations for 2 unknowns:

N̄

ā3
= 〈Ĥ−1

o 〉, N̄

ā3
(k2ā4 + m2ā6) = 〈�̂(k,m)〉 (9)

The solution of the system is

N̄ = ā3〈Ĥ−1
o 〉, ā = ā(k2/m2) (10)

where ā(k2/m2) is the solution to the algebraic equation

ā6 + k2

m2
ā4 − δ = 0, with δ := 〈�̂(k,m)〉

m2〈Ĥ−1
o 〉 (11)

It is a non-trivial fact that this equation has a unique positive so-
lution for every k ≥ 0. It is given explicitly by

ā2(k2/m2) =

⎧⎪⎪⎨
⎪⎪⎩

u+ + u− − k2

3m2
if

4k6

27m6
≤ δ

2k2

3m2
cos θ − k2

3m2
if

4k6

27m6
> δ

(12)

where

u± := 3

√√√√ δ

2
− k6

27m6
±

√
δ2

4
− k6

27m6
δ (13)

and

θ := 1

3
arccos

(
−1 + 27m6

2k6
δ

)
(14)

The two functions in (12) match continuously at k = ko , where 
ko is the unique positive solution to equation δ = 4k6/27m6. For 
k < ko we are in the first case, while for k > ko in the second.

2. Low-energy limit

Let us expand (12) for k 
 m. Up to order k4/m4, we have

ā2
(

k2

m2

)
≈ ā2

o

[
1 + β

3

(
k/āo

m

)2
]

(15)

with

ā2
o = 3

√√√√ 〈 ̂H−1
o a6〉

〈Ĥ−1
o 〉 , β := 〈 ̂H−1

o a4〉
〈Ĥ−1

o 〉1/3〈 ̂H−1
o a6〉2/3

− 1 (16)

From ā and āo we find N̄ and N̄o via the first equation in (10). We 
can then identify two effective FLRW metrics: the low-energy one

ḡo
μνdxμdxν = −N̄2

o dt2 + ā2
o(dx2 + dy2 + dz2) (17)

and the k-dependent one

ḡμνdxμdxν = −N̄2dt2 + ā2(dx2 + dy2 + dz2) (18)

We can interpret ḡo as the metric measured by a classical observer, 
while scalar field (and especially its relativistic modes) propagate 
on ḡ(k).6

6 There is no ambiguity in the definition of “classical observer” or “low energy 
metric”. Indeed, since Lorentz symmetry is violated, there exists a preferred family 
of observers with respect to which statements such as k 
 m are meaningful. We 
identify unambiguously this family as the cosmological (i.e., comoving) observers of 
the metric ḡo . The reason to consider such observers as “classical” is the following: 
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Suppose that an observer with 4-velocity uμ detects a parti-
cle with 4-momentum kμ . The energy and (norm of) momentum 
measured by the observer are

E = uμkμ = ko

N̄o
, p2 = (ḡμν

o + uμuν)kμkν = k2

ā2
o

(19)

where we used the fact that ḡo
μνuμuν = −1 to discover that 

uμ = (1/N̄o, 0, 0, 0). On the other hand, the particle satisfies the 
mass-shell relation in its metric (18):

−m2 = ḡμνkμkν = − k2
o

N̄2
+ k2

ā2
= − f 2 E2 + g2 p2 (20)

having introduced the so-called “rainbow functions” [7]

f := N̄o

N̄
, g := āo

ā
(21)

From (15) it is immediate to compute f and g , which explicitly 
depend on the physical momentum p = k/āo:

f 2 =
(

1 + β

3

p2

m2

)−3

, g2 =
(

1 + β

3

p2

m2

)−1

(22)

We thus obtain a modified dispersion relation from (20),

E2 = 1

f 2

(
g2 p2 + m2

)
≈ m2 + (1 + β)p2 + O (p4) (23)

As expected, the standard dispersion relation E = m is recovered 
in the limit p 
 m. The first correction in the case p ≈ m is pre-
cisely β , a quantity of exquisitely quantum gravitational origin. 
Note that – contrary to the general belief – no particular role is 
played by Planck energy, EPl ≈ 1028 eV. In fact, for a highly quan-
tum spacetime we have β ≈ 1, and hence the particles probe the 
quantum structure of spacetime already at p ≈ m. For a proton, 
this would correspond to mild energies of order 109 eV. On the 
other hand, it is clear that β ≈ 0 for semiclassical states, and hence 
quantum gravity corrections are irrelevant for low-energy parti-
cles. We should mention that a similar result was recovered in the 
semiclassical limit in [25].

3. Analysis and discussion

Having the dispersion relation, it is possible to compute the ve-
locity of the mode:

v = dE

dp
= 1 + β√

m2 + (1 + β)p2
p (24)

This expression only holds in the limit p 
 m, but it is enough 
to show the deformation already at low energies. The exact dis-
persion relation (obtained numerically from (12)) is represented in 
Figs. 1 and 2, where the classical one (β ≈ 0) is compared with the 
choice

〈 ̂H−1
o a6〉

〈Ĥ−1
o 〉 = 0.9〈â3〉2,

〈 ̂H−1
o a4〉

〈Ĥ−1
o 〉 = 1.1〈â3〉4/3 (25)

if such an observer only performs measurement of geodesics of macroscopic bodies 
(for which k 
 m, k being the momentum she measures), she will only investigate 
the regime in which ḡ ≈ ḡo , therefore concluding that the spacetime is described 
by ḡo .

A mathematical description of the situation is the following: there exists a 
manifold whose homogeneous and isotropic metric is ḡo ; semiclassical observers 
coincide with cosmological observers of this metric; if the momentum k of a parti-
cle as measured by such observers is non-negligible compared to the mass m, then 
such particle obeys a dispersion relation with ḡ(k).
Fig. 1. Dispersion relation E = E(p) for a scalar field of mass m. Red = classical 
spacetime; Blue = quantum spacetime (eq. (25)). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 2. Velocity v = v(p) of different modes of the massive field. Red = classical 
spacetime; Blue = quantum spacetime (eq. (25)). The dashed lines represent the 
speed of light in the semiclassical spacetime (black) and in the quantum spacetime 
(green) respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

corresponding to β ≈ 0.2 (a highly non-classical situation). In Fig. 2
we also show the dispersion relation for massless particles: there 
is no dependence of velocity of light on p (though there is still a 
dependence on β , and hence on time). To see why this happens, 
consider the limit k � m of (12). It leads to

ā2
(m

k

)
= ā2∞

[
1 + O

(
m2

k2

)]
, ā2∞ :=

√√√√ 〈 ̂H−1
o a4〉

〈Ĥ−1
o 〉 (26)

The zeroth order coincides with the solution to system (9) with 
m = 0, that is, the system we would have obtained if we consid-
ered a massless scalar field from the start. The massless scalar field 
case was first studied in [18], and ā∞ of (26) coincides with the 
result therein. Now, since ā∞ is independent of k, the metric seen 
by particles with m = 0 is k-independent (though different from 
the semiclassical metric, āo). It is therefore not surprising that no 
mode-dependence is found in the velocity of light particles. This 
can be made explicit by computing the dispersion relation for such 
field: plugging f = N̄o/N̄∞ and g = āo/ā∞ in the general formula 
(23) with m = 0, we derive

E = ā2∞
ā2

o
p =

√√√√ 〈 ̂H−1
o a4〉

〈Ĥ−1
o 〉

3

√√√√ 〈Ĥ−1
o 〉

〈 ̂H−1a6〉
p = √

1 + β p (27)
o
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Thus, as far as massless particles are concerned, the effect of the 
quantum background amounts to a constant shift in the velocity of 
light. While this effect cannot be detected by any local measure-
ment, we stress that the derivation was done for a massless scalar 
field, and might well be different in the case of photons.

In conclusion, our analysis shows that the quantum nature of 
cosmological spacetime unavoidably affects the propagation of test 
particles, producing (apparent) Lorentz-violating effects. This has 
been shown by constructing an effective metric from general as-
sumptions (in particular, we did not need to restrict to a specific 
quantum theory of cosmology). Intuitively, the generality of the re-
sult can be understood by observing that – independently of the 
chosen quantum theory – the quantum state �o of the homoge-
neous gravitational field is not an eigenstate of the “scale factor 
operator” in general. Hence, it is to be expected that matter parti-
cles of different momenta p will couple differently to the quantum 
geometry, probing different aspects of it. In the present work, we 
have used a massive scalar field φ – one of the simplest forms of 
matter – but there is no reason not to expect the same qualitative 
behaviour for other species.

As for the characterisation of this effect, we have shown that 
the only parameter governing the corrections is β , a single func-
tion of �o . This is rather striking, considering that infinitely many 
quantum states can be found that give the same value β . On the 
other hand, we should not be too surprised, since the same hap-
pens for photons propagating in refractive media: the scattering 
of light through a crystal is perfectly well described in terms of 
the refractive index n, a single parameter in spite of the infinitely 
many possible microscopic configurations of the atoms. Moreover, 
we should stress that the current results are based on a homoge-
neous quantum background: it is possible that inclusion of inho-
mogeneities might invalidate this result, but it is also conceivable 
that it will make it even more interesting (for instance, β might 
depend on the position, as does the refractive index of a non-
homogeneous medium).

But how strong is this effect? How big is β? While there is 
no fundamental reason why β should be small, it is an observa-
tional fact that the universe today is classical. This means that the 
state �o describing the current geometry of spacetime must be a 
coherent state with β extremely small [11,12]. Our philosophy is 
therefore to use β as a test for the soundness of coherent states 
within a specific quantum cosmology or – in case no good co-
herent state can be found – as an indicator that said theory of 
quantum cosmology is incorrect.

While β ≈ 0 today, several quantum gravity and quantum cos-
mology theories maintain that in the early stages of its life, the 
Universe should be described by a non-classical state. In this case 
β ≈ 1, and the modified dispersion relations have to be taken into 
account when studying the behaviour of primordial matter. We 
can expect that traces of such effects are left on the CMB, or even 
speculate that they might have played a role in inflation and sub-
sequent formation of structures.
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