Definen las propiedades del bosón de Higgs

Nos hacemos eco de un artículo de Tendencias 21:

 

Tres años después del anuncio del descubrimiento de una nueva partícula, el llamado bosón de Higgs, las colaboraciones ATLAS y  CMS (Compact Muon Solenoid) presentan por primera vez mediciones combinadas de muchas de sus propiedades, en la  tercera Large Hadron Collider Physics Conference (LHCP 2015) que se inauguró ayer en San Petesburgo (Rusia) y seguirá  hasta el cinco de septiembre.Combinando análisis de datos recogidos en 2011 y 2012, ATLAS y CMS han dibujado la imagen más nítida hasta la fecha de este novedoso bosón, informa el CERN en un comunicado.

Los nuevos resultados ofrecen, en particular, la mejor precisión sobre su producción y descomposición, y sobre la forma en que el bosón de Higgs interactúa con otras partículas.

Todas las propiedades medidas concuerdan con las predicciones del Modelo Estándar de física de partículas y se convertirán en referencia para los nuevos análisis que se desarrollarán en los próximos meses, permitiendo la búsqueda de nuevos fenómenos físicos.

Las nuevas informaciones siguen a la mejor medida de la masa del bosón de Higgs que fue publicada el pasado mes de mayo de 2015, también tras un análisis combinado de los registros de ambas colaboraciones.

Ahorrando tiempoboson-de-higgs-viajeros-en-el-tiempo

«El bosón de Higgs es una nueva herramienta fantástica para poner a prueba el Modelo Estándar de física de partículas y  para estudiar el mecanismo Brout-Englert-Higgs que da masa a las partículas elementales», explica el Director General del CERN, Rolf Heuer.

«La combinación de los resultados de estos experimentos proporciona la precisión necesaria para un próximo gran avance en nuestro campo. De esta manera, hemos logrado lo que para un solo experimento habría supuesto al menos dos años más», afirma Heuer.

¿Qué pasará?

Hay diferentes maneras de que se produzca un bosón de Higgs y diferentes formas de que este decaiga o se transforme en otras partículas.

Por ejemplo, según el Modelo Estándar -teoría que mejor describe a fuerzas fundamentales y partículas- cuando se produce un bosón de Higgs, este decae inmediatamente (en aproximadamente un 58% de los casos) en un quark fondo (partícula elemental que pertenece a la tercera generación de quarks) y un antiquark  (antipartícula que corresponde a un quark) fondo.

Mediante la combinación de sus resultados, las colaboraciones ATLAS y CMS determinaron con la mejor precisión hasta ahora las tasas más comunes de decaimiento del bosón de Higgs.

Medidas con semejante precisión resultan de vital importancia, ya que están directamente vinculadas a la fuerza de interacción de la partícula de Higgs con otras partículas elementales, así como a sus masas. Por lo tanto, el estudio de las desintegraciones de este bosón es esencial para determinar su naturaleza.

Asimismo, cualquier desviación en las medidas, con respecto a las predicciones del Modelo Estándar, pondría en tela de juicio el mecanismo Brout-Englert-Higgs y, posiblemente, abriría la puerta a una nueva física más allá de dicho Modelo .

Así que, aunque la combinación de los resultados de estos dos grandes experimentos ha representado un verdadero desafío (los análisis han implicado más de 4.200 parámetros), el esfuerzo ha merecido la pena.

De cara al futuro, el portavoz de la colaboración CMS, Tiziano Camporesi, se muestra entusiasta: «Con este resultado y el flujo de nuevos datos del nuevo nivel de energía del LHC, estamos en una buena posición para lograr ver al bosón de Higgs desde todos los ángulos posibles».

 

¿Cómo afecta el bosón de Higgs a los Viajes en el Tiempo?

El conocimiento de cómo afecta el mecanismo de mecanismo Brout-Englert-Higgs a las partículas elementales es fundamental para establecer cómo se encuentra relacionada la masa con éstas. Si podemos modificar la masa de las partículas, según la teoría de la dilatación gravitacional del tiempo podríamos viajar en el tiempo siempre y cuando tengamos un campo gravitatorio considerable con el que jugar.

Desde luego es un pasito más hacia los Viajes en el Tiempo que abre muchas posibilidades, pero habrá que esperar para poder ver Deloreans o Tardis por doquier.

Teoría cuántica de forma simétrica en el tiempo

Científicos de la Universidad Libre de Bruselas (Bélgica) han desarrollado una formulación totalmente simétrica de la teoría cuántica, que establece una relación exacta entre la asimetría y el hecho de que podemos recordar el pasado pero no el futuro.
Las leyes de la mecánica clásica son independientes de la dirección del tiempo, pero que lo mismo ocurre en la mecánica cuántica ha sido un tema de debate. Si bien se ha acordado que las leyes que rigen los sistemas cuánticos aislados son simétricas en el tiempo, la medición cambia el estado de un sistema de acuerdo con reglas que sólo parecen funcionar hacia adelante, y hay diferencias en la opinión acerca de la interpretación de este efecto.
Ahora los físicos teóricos de Bélgica han desarrollado una formulación plenamente simétrica en el tiempo de la teoría cuántica, que establece una relación exacta entre esta asimetría y el hecho de que podamos recordar el pasado pero no el futuro – un fenómeno que el físico Stephen Hawking ha nombrado la flecha «psicológica» de tiempo.El estudio ofrece nuevos conocimientos sobre los conceptos de libre elección y causalidad, y sugiere que la causalidad no tiene por qué ser considerada como un principio fundamental de la física.
También expande un teorema fundamental de la mecánica cuántica debido a Eugene Paul Wigner, que apunta a nuevas direcciones para la búsqueda de la física más allá de los modelos conocidos. Los hallazgos de Ognyan Oreshkov y Nicolas Cerf se han publicado esta semana en la revista Nature Physics.

teoria-cuantica-viajeros-en-el-tiempoCausalidad

La idea de que nuestras elecciones en el presente pueden influir en los acontecimientos en el futuro, pero no en el pasado, se refleja en las reglas de la teoría cuántica estándar como un principio que los teóricos cuánticos llaman «causalidad», explica la nota de prensa de la universidad, recogida por AlphaGalileo.

Para entender este principio, los autores del nuevo estudio analizan lo que el concepto de elección en el contexto de la teoría cuántica significa realmente. Por ejemplo, pensamos que un experimentador puede elegir qué medición realizar en un sistema dado, pero no el resultado de la medición. Correspondientemente, de acuerdo con el principio de causalidad, la elección de la medición se puede correlacionar con resultados de mediciones sólo en el futuro, mientras que el resultado de una medición se puede correlacionar con resultados de mediciones tanto pasadas como futuras.

Los investigadores sostienen que la propiedad que determina que interpretemos la variable que describe la medida como dependiente de la elección del experimentador, mientras que el resultado no lo es, es que puede ser conocida antes de que la medición se realice.

Desde esta perspectiva, el principio de causalidad se puede entender como una limitación a la información disponible sobre las diferentes variables en diferentes momentos. Esta limitación no es simétrica en el tiempo ya que tanto la elección de la medición como el resultado de una medición pueden ser conocidas a posteriori. Esto, de acuerdo con el estudio, es la esencia de la asimetría implícita en la formulación estándar de la teoría cuántica.

«La teoría cuántica ha sido formulada sobre la base de conceptos asimétricos que reflejan el hecho de que podemos conocer el pasado y estamos interesados ​​en la predicción del futuro. Pero el concepto de probabilidad es independiente del tiempo, y desde una perspectiva de la física tiene sentido tratar de formular la teoría en términos fundamentalmente simétricos», dice Ognyan Oreshkov, el autor principal del estudio.

Nueva formulación cuántica

Para ello, los autores proponen adoptar una nueva noción de medida que no se define sólo por las variables del pasado, sino que puede depender de las variables del futuro también. «En el enfoque que proponemos, las mediciones no se interpretan como «elecciones libres» de los agentes, sino simplemente describen la información sobre los posibles eventos en diferentes regiones del espacio-tiempo», dice Nicolas Cerf, co-autor del estudio y director del Centro de Información Cuántica y Comunicación de la Universidad.

En la formulación simétrica en el tiempo de la teoría cuántica que se desprende de este enfoque, el principio de la causalidad y la flecha psicológica del tiempo surgen de lo que los físicos llaman condiciones de contorno -parámetros con base en los cuales la teoría hace predicciones, pero cuyos valores podrían ser arbitrarios en principio. Así, por ejemplo, de acuerdo con la nueva formulación, es concebible que en algunas partes del universo la causalidad pueda ser violada.

Otra consecuencia de la formulación simétrica en el tiempo es una extensión de un teorema fundamental de Wigner, que caracteriza a la representación matemática de simetrías físicas y es fundamental para la comprensión de muchos fenómenos, tales como qué partículas elementales pueden existir.

El estudio muestra que en la nueva formulación las simetrías se puede representar en formas no permitidas por la formulación estándar, lo que podría tener consecuencias físicas de gran alcance. Una posibilidad especulativa es que tales simetrías pueden ser relevantes en una teoría de la gravedad cuántica, ya que tienen la forma de las transformaciones que se han conjeturado que ocurren en presencia de agujeros negros.

«Nuestro trabajo demuestra que si creemos que la simetría del tiempo debe ser una característica de las leyes fundamentales de la física, tenemos que considerar la posibilidad de fenómenos más allá de lo concebible en teoría cuántica estándar. Que existan tales fenómenos y dónde podríamos buscarlos es una gran pregunta abierta», explica Oreshkov.

Referencia bibliográfica:

Ognyan Oreshkov, Nicolas J. Cerf: Operational formulation of time reversal in quantum theory. Nature Physics(2015). DOI: 10.1038/nphys3414.

Fuente:
Tendencias21
¿Viajero, lo has digerido con facilidad? ¿Nos resumes tus opiniones al respecto en los comentarios?

El primer agujero de gusano análogo a uno gravitatorio

Investigadores de la Universidad Autónoma de Barcelona UAB han creado el primer agujero de gusano (wormhole) experimental que conecta dos regiones del espacio magnéticamente. Se trata de un túnel que transfiere el un campo magnético de un extremo al otro manteniéndolo indetectable, invisible, a lo largo de todo el camino, informa la citada universidad en un comunicado.

En física, un agujero de gusano, también conocido como puente de Einstein-Rosen, es una hipotética característica topológica de un espacio-tiempo, descrita en las ecuaciones de la relatividad general, que esencialmente consiste en un atajo a través del espacio y el tiempo.

Un agujero de gusano tiene por lo menos dos extremos conectados a una única garganta, a través de la cual podría desplazarse la materia. Hasta la fecha no se ha hallado ninguna evidencia de que el espacio-tiempo conocido contenga estructuras de este tipo, por lo que en la actualidad es solo una posibilidad teórica.

Un descubrimiento que nos acerca un poco más a la realidad de los Viajes en el Tiempo

En el ámbito gravitatorio es imposible por tanto crear agujeros de gusano con la tecnología actual, ya que habría que manipular el campo con grandes cantidades de energía gravitacional, que nadie sabe todavía cómo generar. En electromagnetismo, sin embargo, los avances en metamateriales y en invisibilidad han permitido que los investigadores hayan propuesto varios diseños para conseguirlo.

Los investigadores de la UAB han utilizado metamateriales y metasuperficies para construir el túnel experimental, de manera que el campo magnético de una fuente, como un imán o un electroimán, aparece en el otro extremo del agujero de gusano como un monopolo magnético aislado.

El resultado, según la nota de prensa difundida por la UAB, ya es un hecho curioso, dado que en la naturaleza no existen los monopolos magnéticos, es decir, imanes con un solo polo, ya sea Norte o Sur. El efecto, en suma, es el de un campo magnético que va de un punto a otro como si se propagara por una dimensión ajena a las tres dimensiones convencionales.

viajeros-en-el-tiempo-agujero-de-gusano

Un agujero de gusano magnético

El agujero de gusano experimental es una esfera hecha de diferentes capas: una capa externa de superficie ferromagnética, una segunda capa en el interior, de material superconductor, y una pieza ferromagnética enrollada en forma de cilindro que la atraviesa de extremo a extremo. La esfera está construida de tal manera que es magnéticamente indetectable -invisible, en términos de campo magnético-, desde el exterior.

El agujero de gusano magnético es una analogía de los gravitatorios, ya que «cambia la topología del espacio, como si la región interior hubiera sido borrada magnéticamente del espacio», explica Àlvar Sánchez, director de la investigación, en la citada nota de prensa.

Los mismos investigadores ya construyeron una fibra magnética en 2014, un dispositivo capaz de transportar el campo magnético de un extremo al otro. Ahora bien, la fibra era detectable magnéticamente.

El agujero de gusano desarrollado ahora, en cambio, es un dispositivo completamente tridimensional que es indetectable por cualquier campo magnético.

Se trata de un paso adelante que lo acerca a posibles aplicaciones donde se utiliza el campo magnético como, por ejemplo, en medicina. Así, esta tecnología podría permitir alejar al paciente de los detectores al hacerse resonancias magnéticas en los hospitales (proporcionándole más comodidad) u obtener imágenes de resonancia magnética de diferentes partes del cuerpo simultáneamente.

Referencia

A Magnetic Wormhole. Jordi Prat-Camps, Carles Navau, Alvaro Sanchez. Scientific Reports, Article number: 12488 (2015) doi:10.1038/srep12488

Fuente

Tendencias21

Confirman la teletransportación cuántica

Un grupo de investigadores de la Universidad de Delft han podido confirmar la teletransportación cuántica.

Para ello, han tenido que demostrar la teoría de entrelazamiento cuántico, idea introducida por Erwin Shcrödinger y criticada por Albert Einstein y sus allegados con la «Paradoja Einstein Podolsky Rosen» en la que desestimaban la existencia de un lazo que uniera dos partículas separadas.

Sin embargo, los investigadores han probado que Einstein y sus amigos se equivocaban.

Para ello han tenido que crear unas partículas especiales llamadas «qubits» que pueden tener varios valor simultáneamente. Posteriormente se han separado 3 metros y los han puesto bajo observación. Y es aquí cuando han observado que el giro de un electrón en un qubit se refleja en el otro instantáneamente.

Por lo que el fenomeno de teletransportación ha sido nuevamente confirmado por otra fuente.

 

5 Teorías sobre cómo realizar viajes en el tiempo

El Cilindro de Tipler

Esta teoría para realizar viajes en el tiempo, implica un cilindro rotatorio de alta densidad y longitud infinita, que supuestamente giraría sobre su eje con una velocidad similar a la de la luz, creando de este modo una atracción gravitatoria muy alta que serviría para viajar al pasado, ya que atraería todo tipo de materia incluida la luz a una trayectoria en forma de bucle, lo que se conoce como curva cerrada de tipo tiempo que hace que un objeto vuelva al espacio-tiempo de donde partió. Esta teoría fué  desarrollada por el físico Frank J. Tipler en 1974.

Vacío en forma de rosquilla

Agujero negro viaje en el tiempoEl científico israelí Amos Ori cree haber resuelto una de las mayores dificultades para viajar en el tiempo, ya que su teoría no requiere de materia exótica y utiliza el vacío que existe en el espacio para viajar a través del tiempo. Su máquina podría ser construida por una civilización más avanzada que la nuestra dentro de 100 o 200 años. La máquina de Ori se apoya en las teorías de Einstein para afirmar que el espacio puede curvarse en forma de rosquilla hasta crear un campo de gravedad interno capaz de arrastrar consigo al espacio y el tiempo próximos. Añade que las matemáticas demuestran que cada período de tiempo, desde que se crea ese campo de gravedad hasta el presente, se encuentra en su interior y que lo único que falta es calcular cómo llegar a ese punto.

La materia exótica

Los físicos definen la materia exótica como la materia que no cumple con una o varias de las leyes de la física convencional, como tener masa o energía negativa. Los científicos sugieren que los taquiones –partículas que viajan más rápido que la velocidad de la luz– no son capaces de interactuar con la materia ordinaria. Pero la aparición de la energía o masa negativas prueban la existencia de la materia exótica. Tal acontecimiento puede torcer el espacio-tiempo y der acceso a increíbles acontecimientos: la aparición de túneles que conectan el universo, propulsores warp, que aceleran más rápido que la velocidad de la luz, y por consiguiente la máquina del tiempo.

Las cuerdas cósmicas

Representan una serie de defectos unidimensionales topológicos (espaciales) hipotéticos en el tejido del espacio-tiempo que son producto de la formación del universo. Gracias a ellos, se pueden crear curvas de tiempo cerradas que permitirían viajar al pasado. Para construir una máquina del tiempo de este tipo se propone utilizar las cuerdas cósmicas. En teoría, la convergencia de dos cuerdas entre sí o con un agujero negro proporcionará una serie de «curvas cerradas de tiempo similar». Y si se calcula con precisión el movimiento de una nave espacial en forma de ‘ocho’ alrededor de dos cuerdas infinitamente largas, en teoría sería posible trasladarse a cualquier lugar.

A través de un agujero negro

Tal vez el impacto más increíble en el tiempo lo generan los agujeros negros, ya que logran ralentizarlo como ninguna otra fuerza conocida. En su esencia, son máquinas del tiempo naturales. Y si la misión de sobrevuelo de un agujero negro fuera comandada desde la Tierra, el tiempo para cumplir una órbita alrededor del agujero sería de 16 minutos, mientras que los valientes a bordo de la nave se habrían expuesto a una disminución a la mitad del paso del tiempo transcurrido, es decir, tan solo 8 minutos.

Fuente:  http://actualidad.rt.com/